Convergence of a linearized second-order BDF-FEM for nonlinear parabolic interface problems
نویسندگان
چکیده
منابع مشابه
A numerical scheme for solving nonlinear backward parabolic problems
In this paper a nonlinear backward parabolic problem in one dimensional space is considered. Using a suitable iterative algorithm, the problem is converted to a linear backward parabolic problem. For the corresponding problem, the backward finite differences method with suitable grid size is applied. It is shown that if the coefficients satisfy some special conditions, th...
متن کاملLinearized Numerical Homogenization Method for Nonlinear Monotone Parabolic Multiscale Problems
We introduce and analyze an efficient numerical homogenization method for a class of nonlinear parabolic problems of monotone type in highly oscillatory media. The new scheme avoids costly Newton iterations and is linear at both the macroscopic and the microscopic scales. It can be interpreted as a linearized version of a standard nonlinear homogenization method. We prove the stability of the m...
متن کاملStability and convergence of difference schemes for parabolic interface problems
In this paper we report results on stability and convergence of twolevel difference schemes for parabolic interface equations. Energy norms that rely on spectral problems containing the eigenvalue in boundary conditions or in conditions on conjugation are introduced. Necessary and sufficient stability conditions in these norms for weighted difference schemes are established. Convergence rate es...
متن کاملA second-order positivity preserving scheme for semilinear parabolic problems
In this paper we study the convergence behaviour and geometric properties of Strang splitting applied to semilinear evolution equations. We work in an abstract Banach space setting that allows us to analyse a certain class of parabolic equations and their spatial discretizations. For this class of problems, Strang splitting is shown to be stable and second-order convergent. Moreover, it is show...
متن کاملSome Newa Priori Estimates for Second-Order Elliptic and Parabolic Interface Problems
We present some new a priori estimates of the solutions to the second-order elliptic and parabolic interface problems. The novelty of these estimates lies in the explicit appearance of the discontinuous coefficients and the jumps of coefficients across the interface.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2015
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2015.05.006